翻訳と辞書
Words near each other
・ Monohansett (steamboat)
・ Monohardi Upazila
・ Monoharpur
・ Monohon, Washington
・ Monohorgonj Upazila
・ Monohull
・ Monohybrid cross
・ Monohydrocalcite
・ Monohydroxybenzoic acid
・ Monoi oil
・ Monoi Station
・ Monoica
・ Monoicomyces
・ Monoicous
・ Monoid
Monoid (category theory)
・ Monoid factorisation
・ Monoid ring
・ Monoidal adjunction
・ Monoidal category
・ Monoidal category action
・ Monoidal functor
・ Monoidal monad
・ Monoidal natural transformation
・ Monoidal t-norm logic
・ Monoimus
・ Monoiodotyrosine
・ Monoisotopic
・ Monoisotopic element
・ Monoisotopic mass


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Monoid (category theory) : ウィキペディア英語版
Monoid (category theory)
In category theory, a monoid (or monoid object) (''M'', μ, η) in a monoidal category (C, ⊗, ''I'') is an object ''M'' together with two morphisms
* μ: ''M'' ⊗ ''M'' → ''M'' called ''multiplication'',
* η: ''I'' → ''M'' called ''unit'',
such that the pentagon diagram
:
and the unitor diagram
:
commute. In the above notations, ''I'' is the unit element and α, λ and ρ are respectively the associativity, the left identity and the right identity of the monoidal category C.
Dually, a comonoid in a monoidal category C is a monoid in the dual category Cop.
Suppose that the monoidal category C has a symmetry γ. A monoid ''M'' in C is commutative when μ o γ = μ.
== Examples ==

* A monoid object in Set, the category of sets, (with the monoidal structure induced by the Cartesian product) is a monoid in the usual sense.
* A monoid object in Top, the category of topological spaces, (with the monoidal structure induced by the product topology) is a topological monoid.
* A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton theorem.
* A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.
* A monoid object in (Ab, ⊗Z, Z), the category of abelian groups, is a ring.
* For a commutative ring ''R'', a monoid object in (''R''-Mod, ⊗''R'', ''R''), the category of modules, is an ''R''-algebra.
* A monoid object in ''K''-Vect, the category of vector spaces, (again, with the tensor product) is a ''K''-algebra, a comonoid object is a ''K''-coalgebra.
* For any category ''C'', the category () of its endofunctors has a monoidal structure induced by the composition. A monoid object in () is a monad on ''C''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Monoid (category theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.